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ABSTRACT 

Different heavy vehicle suspensions produce different 
levels of dynamic wheel loading on pavements and by 
implication cause different levels for pavement wear for the 
same static axle load. Clearly suspensions which generate 
lower wear should be encouraged but this requires some 
method of assessing suspension performance. 

A technique for using a small scale two post 
servohydraulic shaker facility to replicate in-service 
suspension behaviour in the laboratory has been developed 
and tested. In the first stage of this work. suspension 
displacements were measured during road trials and an 
iterative procedure was used to determine the shaker 
excitations needed to generate the same suspension response 
in the laboratory. The results of these tests have been 
reported previously. 

In this paper, we investigate using simplified dynamic 
models of the vehicle to relate the pavement profiles 
generating the in-service behaviom to the shaker excitations 
which replicate this· behaviom in the laboratory. This 
technique would enable the excitations needed to simulate 
the on-road behaviour to be generated without having first 
measured this on-road behaviour. The adequacy of this 
approach is evaluated and discussed. Differences between 
suspension performance on the road and in the laboratory 
are investigated and methods for compensating for these 
differences are discussed. 

INTRODUCTION 

The influence of the vertical dynamics of heavy vehicles 
on pavement wear has been the subject of extensive study in 
recent years. It is generally accepted that lowering the 
dynamic loading generated by heavy vehicles will reduce 
pavement wear although there is still considerable debate on 
the magnitude of the reduction. The dynamic response of 
heavy vehicles in motion is complex and thus the problem of 
assessing the performance of a heavy vehicle/suspension 
configmation in terms of its impact on pavement wear is not 
trivial. Over recent years we have been investigating the use 
of a relatively simple two post servohydraulic facility to 
replicate, in the laboratory, the on-road dynamic behaviom of 

a heavy vehicle suspension system (de Pont 1993, 1994) and 
thus measme the dynamic wheel forces in the laboratory. This 
work has been reasonably successful but, to date, has required 
that a road test be undertaken to determine the response of the 
vehicle's suspension to actual pavement excitations. The 
software control system for the servohydraulic shakers (which 
was developed as part of the project) is then used to establish 
the shaker excitation signals required to generate the same 
suspension response for the wheels being excited. Once this is 
achieved the wheel forces can be measured from 
instrumentation on the shakers. This approach has some 
limitations. The need for a road test adds to the time and cost 
involved. It also means that. the results are dependent on the 
test site used. This imposes limitations on the repeatability 
and transferability of the test. In this paper we investigate 
using a relatively simple dynamic model of the vehicle to 
estimate the relationship between the road profiles and the 
equivalent shaker excitations. This would eliminate the need 
for road testing and allow the use of a realistic but theoretical 
road profile or set of profiles which would be stable with time 
and transferable from test facility to facility. 

Numbers of attempts have been made in the past to model 
the dynamics of the vehicle and references can be made to 
Cebon (1985), Hunt (1989), Lee and Hedrick (1989), 
Schiehlen and Schafer (1989) and Venhovens (1994) among 
others. In this paper we start with the fundamental equations 
of motion and develop a relatively simple model of the 
dynamic behaviom of the vehicle which we can calibrate 
simply through modal analysis testing. This model is then 
used to estimate the relationships between the vehicle response 
to on-road excitations and laboratory based shaker excitations. 

THE PITCH PLANE MODEL 

For the present study a simple pitch plane model as shown in 
Fig. 1 is used. This model assumes only one spring and one 
damper at each axle position. Roll behaviour is ignored. This 
simplification is also used in the laboratory tests where the 
two post shaker rig used is set up so that each actuator excites 
a complete axle and so no roll motion is induced. This is 
justifiable because, except on very rough roads, roll is a 
negligible contributor to dynamic wheel forces (OECD 1992). 
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Figure 1. Simple pitch-plane model. 

The model also ignores the unsprung mass behaviour of 
the vehicle. The equations of motion are: 

d 2x 3 dX. 
m-+ ~(c.-' +kX)=O 

dt2 tt'dt " 
(1) 

(2) 

where the three suspension motions, Xi are related to the whole 
vehicle motions by 

XI =x-aL9 -XF (3) 

(4) 

X3 = x +yL9 - Z F (5) 

Figure 1 indicates that the system should have three 
degrees of freedom. However, EQs (1) and (2) and 
constraints (3) to (5) restrict the system to only two degrees of 
freedom. These equations can be solved as shown in 
appendixA to give the following general solution. 

where the natural frequency of vibration and critical damping 
ratio are given by 

(7) (K3 + P;!rK2) . 

Irm 

and 
Yi(t) = L9(t) + PiX(t) (8) 
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for i = 1, 2 and Kz, K3 and Ir are as defined in appendix A 

In general both natural modes of vibration are a mixture 
of bounce and pitch which depend on the geometry of the 
vehicle. If Ir is less than a critical value the bounce mode is 
more prominent for the lower frequency and the pitch mode 
is more prominent for the higher frequency. 

The frequencies of the vibrations depend on the values of 
Kz, K3 , Ir. Pi and ID, although these are not all independent It 
is interesting to use the model to investigate the effect of load 
distribution in the vehicle on the natural frequencies and mode 
shapes. Keeping the total sprung mass constant, it is possible 
to change the location of the centre of gravity (Cg) of the 
vehicle and hence change the value of a, ~ and y. From EQ 
(8) we see that when Pi = 0 the motion is pure pitch, and that 
when Pi becomes very large the motion is pme bounce. The 
variation of Pi with a, (the location of the Cg) is shown in 
figure 2. 
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Figure 2. Variation of Pi with Cg position. 

The value of Pi becomes either zero or very large near the 
critical value of a. At this point the modes have separated into 
pure bounce and pitch. The variation of frequency with a is 
shown in figure 3. 
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Figure 3. Variation of natural frequencies with Cg position. 



The difference between the two natural frequencies 
becomes minimum at the critical value of a. It is interesting to 
note that the two normal modes swap over at this transition 
point. When a is less than the critical values, the first normal 
mode (i = 1) corresponds to the lower frequency, and the 
second normal mode (i = 2) corresponds to the higher 
frequency. When a is greater than the critical value this 
situation is reversed. 

The model's parameters are: mass, pitch inertia. length, 
axle locations, Cg position and the three stiffness and damping 
values. Each of the governing EQs (1) and (2) can be divided 
through by ID, the mass, so that the inertia, stiffness and 
damping terms are all defined as quantities per unit mass. The 
actual value of the mass is then no longer needed. In the 
solution in appendix A we have assumed that the damping is 
proportional to the stiffness for each axle. By weighing the 
vehicle axle by axle and measuring the axle positions, the 
mass, and Cg position can be calculated. Using modal testing 
(Ewins, 1984) the natural frequencies, damping and mode 
shapes of vehicle can be measured. Appendix B shows' how 
these measurement can be used to calculate the vehicle 
parameters needed to evaluate the model. 

Applying the method now to the three axle tanker trailer 
fitted with air suspension which has been used in the shaker 
testing research (de Pont, 1994), we measured and calculated 
the parameters listed in Table L 

Table I Vehicle parameters 

Mass (m) x 
19535 kg 0.42 

Using modal testing we found a natural frequency at 1.73 
. Hz but had great difficulty in finding the other frequency and 

mode shape we expected with confidence. Eventually we 
reached the conclusion that, in fact, the two natural 
frequencies were so close together at 1.73 Hz (effectively both 
the same) that the modaI analysis was not separating them. 
This requires some modifications to the method for calculating 
the model parameters. With the two modes effectively 
superimposed on each other the mode shape results are an 
arbitrary combination of the two modes and so the procedure 
(see appendix) for calculating the Pi values could not be 
applied. However, if we look at EQ (7) we see that if O>i = CI>z 

but PI * P2 then Kz = O. This implies that 

(9) 

H we assume that kz = k3• that is, that the two axles in 
the tandem bogey have the same stiffness, we find that kl = 
1.02kz. EQ (9) is identical in form to the moment balance 
used to calculate a, ~ and 'Y from the axle loads and so the 
resulting stiffnesses are proportional to the axle loading. As 
air suspensions are designed to behave in this way this is a 
perfectly reasonable outcome. As both values of Pi are not 
zero there is a further condition obtainable from EQ (AI5), 
that is 
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(10) 

I = a 2
kl + ~2~ +'Y2~ 

r kl+k2+~ 

From these and the damping we can calculate all the 
remaining parameters needed to evaluate the model. These 
are listed in Table 2. 

Table 2 Vehicle dynamics parameters 

Inertia ratio kl/m k2J'm kJlm c/k;/.. 
(IImI}) Nlkg.m Nlkg.m Nlkg.m 

0.182 39.95 39.09 39.09 0.011 

When the two modes have identical frequencies the 
value of a must equal the critical value discussed previously. 
In this case the values of Pi are indeterminate except that 
they must satisfy Ir: -lIPIP2. However, if we consider a very 
small shift in a we find the solution PI= -1'2. 

H we estimate the inertia by treating the liquid load as a 
uniformly distributed mass and the rest of the sprung mass as 
lumped masses at each of the axles we obtain a value for 
I1mL2 = 0.163 which is about 11% below the value 
calculated from the modal tests and the model. H we assume 
that the spring stiffnesses are 5% lower than those calculated 
and use this inertia value we obtain two natural frequencies, 
1.69 Hz and 1.78 Hz for the two modes. The modal tests we 
conducted would not have separated two modes as close as 
this. Thus the results are as consistent as we could 
reasonably expect. Analysing road test measurements on the 
same vehicle we also find a single response peak around 
1.75 Hz which again supports the model. Hunt (1989) 
remarked that these two fundamental modes, generally 
occurring in the frequency range 15 Hz to 4 Hz, are often 
indistinguishable because neither mode is pure bounce or 
pure pitch. However, our present analysis, the problem of 
distinguishing the modes occurs because their frequencies 
are close to each other. Modes that are a combination of 
bounce and pitch do not present any difficulties for the 
method. 

RESPONSE 

Having defined the model we proceed to study the 
response of the vehicle due to external excitations coming 
from the road profile through three wheels, ie. ~ (front 
wheel), Y F (middle wheel), and Zt: (rear wheel). The equations 
of motion under the influence of external excitation reduce to 

where 

(12) 
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RESPONSE DUE TO ROAD PROFILE 

The situation of a vehicle proceeding along a road 
corresponds to the same excitation disturbance applied to each 
of the three axles with appropriate time lags which depend on 
the velocity of the vehicle. Let us consider road excitations of 
the form 

XF = X F eiQ)t 

Y F = X F ei(Olt++ J} 

ZF = X
F 

ei(Olt++ z} 

Let the solution of EQ (11) be of the form 

(13) 

(14) 

The response on normal coordinate due to the excitation 
of the pavement is given by 

The Yi coordinates can be converted to x and e coordinates 
using the following equation which is derived from EQ (8) 

These coordinates can in rum be converted to the 
suspension deflections through EQs (3)-(5) as follows 

(17) 

SAME EXCITATION ON MIDDLE AND REAR 
WHEELS WITH TIME DELAY 

Now we examine the response of the vehicle in the 
laboratory situation when the same excitation is applied to 
the middle and rear wheels with an appropriate time delay. 
The excitations in this case are 
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The response on the normal coordinates due to the above 
excitations is given by 

(1+ jro')..)[(Pi+ : )~ei'J+(Pi+ ~ )~ei'zJ 
r r (19) 

The bounce and pitch responses can be obtained from 
EQs (16) and (19). With this type oflaboratory excitation the 
vehicle response (as calculated from the model) can be 
matched to the on-road response (as calculated from the 
model) at only one point on the vehicle. The transfer function 
needed to convert the road profile excitation to an equivalent 
laboratory excitation for each of the three possible matches of 
vehicle response are given below. 

(a) Same Response on the front wheel (match Xl only) 

(b) Same Response on the middle wheel (match X2 only) 

(21) 

(c) Same Response on the rear wheel (match X3 only) 

(22) 

In each case, the numerator values for x and e are those 
calculated from EQ (16) which is a transformation of the 
results of EQ (15). Those in the denominator are determined 
by applying the same transformation to the EQ (19) results. 

DIFFERENT EXClTATIONS ON THE MIDDLE AND 
REAR WHEELS 

The shaker testing procedure allows two independent 
excitations to be applied to two axles of the vehicle. The 
software control system which is called SYSCOMP 
determines the two excitations required to match a target 
response at each of the two axles. The target responses used 
in our tests have been the suspension deflections measured 
during road tests. In terms of the model, these excitations are 
written as. 

In this case the suspension displacements at the middle 
and rear axles are given by 



where 

(25) 

By equating the suspension response of EQ (24) to that 
generated by EQs (15), (16), and (17) we can calculate the 
transfer functions (Y~, and 'WXF) required to convert the 
road profile XF to the shaker excitations, Y F and Zt: required 
to generate the same suspension displacements at the middle 
and rear axles. Transfer function (Y rIXF, and 'ZrIXF) thus 
computed for our vehicle model are shown in figures 4 and 
5. 
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These functions match the suspension displacement 
response of the model at middle and rear axles only. There 
are not sufficient degrees of freedom to match the behaviour 
at the front axle. 

As can be seen these transfer functions are dependent on 
the vehicle speed. The effect of wheelbase filtering changes 
significantly with speed. The general pattern is that, at low 
frequencies, the simulated laboratory excitations are slightly 
modified versions of the road profile which compensate for 
the front axle excitation which occurred on the road. At the 
vehicle modes the compensation required is more 
complicated and speed dependent and at higher frequencies 
the transfer functions tend towards unity ie the road profile 
excitations are applied unchanged. 

CALCULATING LABORATORY EXCITATIONS 
FROM PAVEMENT PROFILES 

The transfer functions developed in the previous section 
can be used to calculate the shaker excitations, Y F and Zt: 
(applied at only the middle and rear axles) from measured 
road profile data,~. Figure 6 shows the pavement profiles 
measured for an urban street in Auckland by the Australian 
Road Research Board laser profilometer. 

o 5 10 15 20 25 30 35 40 

TIme (lIBe) 

Figure 6. Measured road profiles. 

As the profile computation involves the double 
integration of an accelerometer signal (to compensate for 
vehicle motions), the output profile has a parabola 
superimposed over it. As this parabola is of much greater 
magnitude than the underlying signal it is not easy to filter it 
out without error. The best method we found was to 
regression fit a second order polynomial and subtract this 
from the data. With this approach a good repeatability 
between repeat measurement set was achieved. Figure 7 
shows the processed profiles. 

The profile data were recorded at 0.0496465 m 
intervals. The vehicle measurements were all taken at a 
sampling rate of 100 Hz. Using the vehicle speed, this time
based sampling rate was converted to equivalent spatial 
coordinates and the profile data were interpolated to the 
same coordinate base. 
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Figure 7. Filtered road profiles. 

The resulting pavement profile data, Xr. were converted 
to equivalent shaker excitations, Y f and ~, using the 
transfer functions described above. These computed shaker 
excitation signals are compared with the measurements of 
those generated by the SYSCOMP software package in 
matching the measured on-road behaviour of the actual 
vehicle in figures 8 and 9. The shaker excitations generated 
by SYSCOMP result in a very good match between the 
suspension displacements measured in the laboratory and 
those measured on the road (de Pont, 1994). 
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Figures 8 and 9 show that the values of the excitations 
computed from the road profiles using the model are in 
reasonably good agreement with those generated by 
SYSCOMP except for some time shifts at some points. 
This can be attributed, at least in part, to speed fluctuations 
during the road test. The profile data were converted to the 
time domain assuming a constant vehicle speed. Although 
the tests were nominally undertaken at steady speed some 
variations are inevitable. A further source of variability is 
that the measurements of vehicle response and pavement 
profile were not carried out simultaneously. There was an 
interval of over a year between these measurements and thus 
it is likely that some profile changes occurred in this time. 
Bearing these two factors in mind the match between the 
calculated excitations and the measured ones is satisfactory. 

CALCULATING EXCITATION FROM RESPONSE 

EQ (24) can also be used to calculate excitation signals, 
Y f and 4, from measured response (suspension 
displacements, Xz and X3). These are, of course, the 
excitations needed to elicit this response from the model and 
not necessarily those for the actual vehicle. The results of 
this computation are shown in figures 10 and 11 where they 
are compared with the laboratory measured displacements. 
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The agreement between computed and exact data is 
excellent and in fact better than the comparisons in figure 8 



and 9. This indicates that the model in fact represents the 
sprung mass behaviour of the vehicle quite well and that the 
differences between the excitations calculated from the road 
profiles and the measured ones may well be caused by errors 
in the profile rather than inadequacies of the model. It is 
possible to use this fit between the model response and the 
actual vehicle response to optimise the values of the model 
parameters. TIlis is an alternative approach to the modal 
analysis undertaken previously. If we do this we can 
recalculate the excitations using the optimised model 
parameters. The results of doing this are shown in figures 12 
and 13. 

0.04 

0.03 
g 
~ 0.02 
ID 
E 0.01 
ID 
u 

t 0 .. 
'6 ~.01 
iii 
~ ~.02 
~ 

~.03 

1--caJCUIaled excitalial fer rear wheel I 
- Measured excitalial fer rear wheel 

~.04 -f----+----+-----+-----i 
o ?O 

Tune (sec) 

30 

Figure 12. Computed vs measured rear excitations 

0.04 

0.03 

g 0.02 
~ 
ID 0.01 
E 
! 0 
i ~.01 
'6 
iii ~.02 
.2 
~ ~.03 

~.04 

I --caJcuIaled excltation fer middle wheel I 
--Measured excitation fer middle wheel 

40 

~.05 ~---+----+-----+-----i 

o 10 20 

TIme (me) 

30 

Figure 13. Computed vs measured middle excitations. 

40 

The fit is almost perfect There is a minor discrepancy 
at the end of the time trace which comes about because the 
Fourier transform procedure used assumes that the signals 
are circular which is not correct The original vehicle 
response was measured during a test on a straight section of 
road. There is no reason why the end of the recorded 
response should match up with the beginning. The 
optimised model parameters used for this fit are given in 
Table 3. 
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Table 3 Optimised vehicle dynamics parameters 

Inertia ratio kl/m k;zfm kym clkiA. 
(IlmL2

) Nlkg.m Nlkg.m Nlkg.m 

0.140 44.32 43.37 43.37 0.010 

Referring back to Table 2, it can be seen that the 
changes in parameters are small. The spring stiffnesses have 
increased by about 11 % and the inertia ratio is much closer 
to the value estimated from the vehicle geometry. The 
damping is virtually unchanged. . 

IDGHER FREQUENCY MODES 

The simplified model described above simulates the 
sprung mass response of the vehicle and when used to 
calculate shaker excitations from road profiles only modifies 
the low frequency components. The higher frequency 
components of the road profile are unchanged and also part 
of the shaker excitations. If we consider the typical dynamic 
behaviour of heavy vehicles we see that this is perfectly 
reasonable. At higher frequencies the modes of vibration are 
primarily unsprung mass modes, that is, vibrations of the 
axle assembly. These will be stimulated by direct excitation 
at the axle concerned and largely unaffected by inputs at the 
other axles. For this reason, the excitations required in the 
laboratory to produce the same behavioUr as on the road will 
be very similar. In terms of the aim of the work which is to 
be able to assess suspension performance by measuring 
wheel forces in the laboratory, these higher frequency modes 
are a significantly smaller contributor to wheel force than the 
low frequency modes and so it is less critical to reproduce 
them accurately. 

CONCLUSIONS 

Our aim in this work was to develop a simplified model 
which behaves sufficiently similarly to the real vehicle to be 
able to be used for converting the in-service dynamic 
excitation applied when the three vehicle axles pass over a 
road profile into a pair of shaker excitations which will 
produce the same suspension response at the two axles being 
excited. It was not intended to realistically model the 
vehicle dynamics in detail. 

The model used simulates the sprung mass response of 
the vehicle and uses linear spring and damper elements. We 
have developed an algorithm for using modal testing 
measurements on the vehicle to estimate the model's 
parameters. The model was then used to calculate the 
required laboratory eXCltatlons from road profile 
measurements which were compared with those generated by 
matching the vehicle's measured response. The match 
obtained was reasonable given that the input road profile 
data were not ideal. (They were recorded a considerable 
time before the vehicle response measurements and the 
conversion to time coordinates using vehicle speed was 
rather simplified). Using the vehicle response measurements 
as the input to the excitation calculations gave a significantly 
improved match. Using the measured response to optimise 
the model parameters gave an even better result 1bis 
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suggests a modified modal analysis procedure which uses the 
shakers excItation and suspension displacement 
measurements as the response. The next step is to conduct 
further shaker trials using the calculated excitations as ~put 
The resulting vehicle response can then be compared to the 
actual response measured during road tests. 

Although very simple the model has also provided 
insights into the interaction of bounce and pitch in the 
sprung mass response of heavy vehicles and the influence of 
the position of the Cg and the magnitude of the pitch inertia 
on the coupling of these modes. 
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APPENDIX A 

SOLUTION OF EQUATIONS OF MOTION OF 
MODEL 

The equations of motion are: 

(AI) 

and 

(A2) 

where the three suspension motions, Xi are related to the 
whole vehicle motions by 

x) =x-aL9 -XF (A3) 

(A4) 

(AS) 

. Although there are three suspension mOvements equations 
(A3) to (AS) constrain them to each other so that the system 
has only two degrees of freedom. Substituting EQs (A3) to 
(AS) into EQs (AI) and (A2) gives us the following two 
equation in two variables. 

and 

where 

+(k) +k2 +/sp 
+(~~ +k3'y -k)a)Le = FI 

I d29 d9 
~+(a2c) +~2C2 +y2C3 )L-
L aI dt 

dx 
+(~2 +yc3 -ac)

dt 

+ (a 2k) +~2~ +y2/s)L9 

+(~~ +"(Is -ak)p 

dXF dYF dZF 
FI=C)-+C2-+C3-

dt dt dt 
+k) XF+k2 YF+/s ZF 

(A6) 

(A7) 
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In order to determine the normal modes of vibration and 
the natural frequencies, we set the excitations to zero, i.e. Ft = 
F2 = o. 

If we restrict the solution to the case where, 

kl k2 k3 I = - =-= (AS) 

Then we can make the following substitutions in our 
equations of motion, 

k)+~+/s =K) 

("(Is + ~ - ak) = K2 

(a 2 k) + ~2~ + y2~) = K3 (A9) 

mL2 I 
-=-

I IT 

Hence, EQs (A6) and (A7) reduce to 

and 

d29 K dx K d9 mL_+_2 (j .. _+ x) +_3 (AL-+Le) =0 (All) 
di IT dt IT tit 

We can arbitrarily create a new variable y(t) which is a linear 
combination of the existing variables, 9(t) and x(t) as follows, 

y(t) = Le(t) + px(t) (AI2) 

where p is an arbitrary constant 

Combining equations p. EQ(AlO) + EQ(All), we obtain 

(A13) 

If we choose p so that 

K K 
_2 +K) =K2P+-3 

fTP IT 
(A14) 

i.e. p satisfies the quadratic equation 

(A15) 

There are two real values ofp <Pi, i = 1,2) which satisfy this 
condition and hence EQ (AI3) becomes two equations of the 
form, 
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m
d2y 

+'A(K3 +p.K2 }dy +(K3 + p j K2
)y = 0 (A16) 

dr I, I dt I, 

These can be solved for the two normal modes of 
vibration as given by EQ (AI7). 

The natural frequency of vibration and critical damping 
ratio are given by 

(K3 + pJ,K2 ) 
00. = ; 

I I,m 
(AI 8) 

with i=I,2. 

APPENDIXB 

EVALUATING MODEL PARAMETER FROM 
MODAL TEST MEASUREMENTS. 

Consider now how the model parameters might be 
determined. If the axle loads and spacings are measured, it is 
a simple matter to calculate the mass and the position of the 
Cg for the whole vehicle. As the motion we are modeling is 
that of the sprung mass. it is better to first estimate the 
unsprung mass of each axle and subtract this from the axle 
loads measured before calculating the Cg position. For the 
three axle trailer we are using this has virtually no effect on 
the result. Thus we have parameters, ID, L, €X, P and y. If we 
then undertake a modal analysis on the vehicle we can 
measure the frequency, damping and mode shapes of the two 
fundamental modes of vibration. The mode shapes are 
measured in terms of the motions of the ends of the vehicle, 
variables Xl and Xz (as defined in EQs (A3) and (AS». From 
EQs (A3)~ (AS) and (AI2), Xl and X3 can be related back to 
the modal variables Yi. 

424 

(BI) 

In the modal coordinate system, y;, the eigenvectors are 
(1,0) and (0,1). Thus we can use EQ (AI9) to solve for the 
Pi values from the mode sbapes as measured in Xh X3 
coordinates. From EQ (A15) constraining the p values we 
can show that 

(B2) 

From EQs (A18) and (A14) we can show that 

(B3) 

which from EQ (A9) is a linear system of three equations in 
three unknowns, kh kz and k3 which can be solved. 

From the modal damping and EQ (AI8) we can 
calculate 'A. Thus all the parameters in the model have been 
determined. 


