
 250

A GENERIC SOFTWARE ARCHITECTURE FOR A DRIVER INFORMATION
SYSTEM TO ORGANIZE AND OPERATE TRUCK PLATOONS

Andreas FRIEDRICHS Philipp MEISEN Klaus HENNING
RWTH Aachen University

Aachen, Germany

Abstract
One possibility to manage the continuous increase of freight transportation and to optimize
utilisation of motorway capacities is the concept of truck platoons which form “trains on
road” with the aid of Advanced Driver Assistance Systems. In this case the trucks are
electronically coupled keeping very short gaps (approx. 10 meters) to form truck platoons on
motorways. This contributes to optimisation of traffic flow and reduction of fuel consumption
advantaged by slipstream driving. In this paper a brief introduction into these truck platoons
is given as well as the description of the Driver Information System which helps the truck
drivers to organize and operate these platoons. Furthermore a generic software architecture
for the Driver Information System of the platoon system is presented. This architecture
guarantees the development of a modern, flexible, extensible and easily configurable system,
especially for Human Machine Interfaces of modern and future Advanced Driver Assistance
Systems.

Keywords: Truck platoons, Driver information system, Advanced driver assistance systems,
Software architecture.

Résumé
L’idée des « trains routiers » composés de convois de camions équipés de systèmes avancés
d’aide à la conduite, permet de gérer l’accroissement du trafic de marchandises et d’optimiser
l’exploitation des capacités routières. Dans ces convois sur autoroute, les camions sont
couplés électroniquement à des distances courtes d’environ 10 mètres. Ceci contribue à la
fluidité du trafic et à la réduction de la consommation de carburant par effet de traînée. Cet
article donne une brève introduction du concept de convoi de camions et une description du
système d’informations des conducteurs leur permettant d’organiser et utiliser ces convois. En
outre, une architecture logicielle générique constituant la base de ce système est présentée.
Elle garantie le développement d’un système moderne, flexible, extensible et facile à
configurer, en particulier pour les interfaces homme-machine de systèmes actuels et futurs
avancés d’aide à la conduite.

Mot-clés: Convois de camions, systèmes d’information au conducteur, systèmes d’assistance
à la conduite, architecture logicielle.

BackBack

 251

1. Introduction into Electronically Coupled Truck Platoons

1.1 Problem Definition

The integration of the new European member countries is a challenging component for
national traffic planning in the near future. Due to its central geographic position, Germany
has to shoulder the majority of future traffic emergence. Additionally, this traffic will
predominantly encumber the road. A modern national economy needs an efficient traffic
system to successfully face such a challenge. Otherwise, today’s even worse traffic situation
will be preassigned to collapse. The importance of this fact was emphasized by studies from
the European Commission in 2006. Between 1995 and 2005 a growth of 28 % in road freight
transport was detected. Furthermore, until the year 2020 an increase of 41 % in road
transportation is expected (European Commission, 2006).

1.2 The Approach

One possibility to meet the rising traffic volume on the roads is the modal shift to other types
of transportation (e.g. rail, shipping). A further potential lies in the optimisation of the road-
side traffic flow by evaluating the application type for driving assistance systems. In the
future, such systems shall perform tasks which currently have to be executed manually by the
truck driver.

Since the 1990’s, Advanced Driver Assistance Systems (ADAS) for trucks have been on
offer, including pre-adjustment of speed and distance to the front vehicle. This is exerted
automatically via computerised engine- and brakes-management in connection with an
automated transmission. The combination of an Adaptive Cruise Control (ACC) together with
an Automatic Guidance (AG) leads to Autonomous Driving, similar to an autopilot in an
airplane.

The difference here is the necessity of a leading vehicle. Following trucks can go far distances
without any manual engagement by the driver as long as another ahead-driving vehicle exists.
Nevertheless, each truck must be assigned with a truck driver at all times. Due to the platoons,
smaller distances between the vehicles (up to 10 meters) can be realized. These truck platoons
contribute to an optimization of traffic flow of up to 9 % and a reduction of fuel consumption
of up to 10 % due to slipstream driving (Savelsberg, 2005).

1.3 Objective of the Project KONVOI

The objective of the project KONVOI is the development and evaluation of the practical use
of truck platoons with ADAS. With the assistance of virtual and practical driving attempts, by
using experimental vehicles and a truck driving simulator, the consequences and effects on
the traffic will be analysed. Within the project KONVOI, four experimental vehicles will be
equipped with the required automation-, information- and automotive-technology to build
truck platoons. After sufficient testing of the ADAS for proof of system security as well as
clarification insurance-legal aspects, the experimental vehicles can be subsequently tested on
motorways with traffic.

1.4 The Platoon System

The main system components of the platoon system are the Advanced Driver Assistance
System (ADAS) and the Driver Information System (DIS) (Figure 1). The longitudinal

 252

guidance of the ADAS is based on a LIDAR distance sensor, which is used to determine the
distance in longitudinal direction and the transversal offset to the leading vehicle. There is
also a need for a vehicle-vehicle-communication (WLAN), to transfer necessary vehicle data
from all platoon members, which is required for the ACC-control to realise the target distance
of 10 meters. In all trucks a target acceleration interface is implemented, which automatically
calculates the drive-train and the management of the different brakes in the vehicles. The
transversal guidance of the ADAS is based on the transversal offset to the leading vehicle and
the recording of its own track position with a CMOS image processing system as well as the
analysis of the data flow from the vehicle-vehicle-communication. The necessary steering
moment for the automated guidance of the trucks is realized via a steering actuator on the
base of an electric motor in the vehicle, which is built as a dual circuit with detached energy
supply.

With the help of the Driver Information System (DIS), the truck driver plans his route, selects
economic platoon participants as well as initialises and respectively confirms the platoon
manoeuvres in order to build and to dissolve the platoon. According to that, the DIS is the
human machine interface (HIM) of the platoon system (see section 2). The platoon
organisation is realised on a central server with a data-mining-algorithm under consideration
of economic aspects (Meisen et al., 2008). For this task, the DIS has to send the time
schedule, route plan and GPS position of the truck with a vehicle-infrastructure-
communication via G3 to the central server.

Central Server

Global Positioning System (GPS)

Vehicle-
Infrastructure-

Communication

Automatic
Guidance (AG)

Vehicle-Vehicle-
Communication (WLAN)

Adaptive Cruise Control (ACC)

Driver
Information

System (DIS)

Advanced Driver Assistance System (ADAS)

Platoon System

Figure 1 – The Platoon System (Friedrichs, in prep.)

1.5 Emphasis of this Paper

Within the following sections, the focus of this paper will be set on the DIS of the platoon
systems and how a generic software architecture of a DIS as a HMI for ADAS should be
designed. Consequently, the system architecture of the ADAS will not be the subject of this
paper. A detailed overview of the system architecture can be found in Henning et al. (2007).

 253

2. Driver Information System (DIS)

2.1 Overview – The DIS as the Information Manager

In this section the data processing concept of the DIS will be explained. Figure 2 makes clear,
that the DIS is not only the HMI of the platoon system. In fact, the DIS is the information
manager between the truck driver and the ADAS as well as the central server. Via touch
screen the user input of the truck driver is processed by the DIS, and in dependency of the
user input, the data is given to the technical systems. Vice versa the DIS processes the data of
the technical systems and informs the driver in all platoon phases about the current platoon
situation.

During the platoon organization, the driver has to enter the DIS settings, has to plan his route
and time schedule and has to choose a suitable platoon from an offer list. This data is
preprocessed by the DIS and sent via 3G to the central server. The most important data for the
central server is the route information of each truck as well as the platoons chosen by the
driver. On the other hand, the DIS gets a list with suitable platoons sorted by economic
criteria from the central server. Furthermore, the central server immediately informs the DIS
about any alterations within the planned platoons.

Two further tasks of the DIS are the navigation to the planned meeting points/destinations and
the warning of danger areas such as road constructions, bridges, motorway junctions and
tunnels. The platoons have to be dissolved manually by the truck driver ahead of these areas.
During the platoon drive, the drivers have to initiate and respectively confirm all platoon
maneuvers (connecting, dissolving and lane change). The control signals from the driver to
the ADAS are sent through CAN-Bus. The DIS permanently informs the driver about the
actual state of the platoon.

Automatic longitudinal and transversal control,
Realization of convoy maneuvers

Route navigation,
Handling and forwarding

of information
Control signals

for platoon maneuvers
Current platoon state

Driver Information
System (DIS)

Truck driver

To plan time schedule and route,
To choose/cancel a convoy,

To initiate/attest the convoy maneuver

To assign/delete Routes,
To assign/delete the convoy choices

To assign/refresh the offer list,
To inform of convoy changings

To write/update the offer list,
To control the planned truck platoons

Advanced Driver
Assistance System (ADAS)

To inform the truck driver
about current platoon state,

To announce the platoon offers,
To issue route instructions

Central Server

Legend

System Data flow

Figure 2 – The DIS as the Information Manager (Friedrichs, 2008)

 254

2.2 Requirements Specification for the Software Architecture

The former section clarified, that the DIS is on the hand the HMI and on one hand the
information manager of the platoon system. This must be explicitly considered in the
specification of the requirements for the DIS software architecture. In the following, the
requirements of the DIS software architecture are indicated with the letter “R” (for
requirement) and a consecutive number, summarized in table 1.

Modularity, Extensibility, Flexibility and Configurability (R1)
The usual demands made to software architectures for an HMI are modularity, extensibility,
flexibility and configurability. In this context modularity means that certain functionalities are
combined in well-defined software components. These components have to be self-
explanatory and exchangeable. For this purpose it is important that the interfaces between the
modules are explicitly specified. The extensibility of the software architecture should be
flexible so that additional functions can be added subsequently and easily. The whole
software system – particularly the graphical design of the HMI – should be fast to configure
and change with a configuration file so that no alterations of the source code are necessary.

Robustness and Reliability (R2)
The automobile sector has especially high demands on technical systems in vehicles
concerning robustness and reliability (Wietzke/Tran, 2005). Therefore, the software
architecture has to ensure the robustness and reliability through adequate safety mechanisms
and functions.

Information and Data Management (R3)
The DIS as an information manager has to handle and process a large quantity of data as well
as the transmitting of processed data to the corresponding technical systems. Therefore, the
system architecture has to support an internal communication, in order to support the different
software components with the required data. Furthermore, the software architecture has to
support different functions to manage the data in the internal memory as well as in data bases.

External Communication with System Environment (R4)
The DIS must be able to communicate with their system environment. Accordingly, an
external communication with appropriate communication interfaces (e.g. CAN-Bus, 3G) has
to be implemented. Furthermore, the ease extensibility (also for other technologies e.g.
WLAN, Flexray) has to be guaranteed by the software architecture (cf. requirement R1).

Interaction with the User (R5)
The DIS is the HMI of the platoon system. The relevant input is made by the driver on the
user interface (e.g. touch screens). The system architecture must handle the user input through
the user interface and must give the effects of the users’ manipulation back to the user
interface so that the user can assess the system state.

Table 1 - Requirements for the Software Architecture

R1 Modularity, Extensibility, Flexibility and Configurability
R2 Robustness and Reliability
R3 Information and Data Management
R4 External Communication with System Environment
R5 Interaction with the User

 255

2.3 Design of the Software Architecture

The architecture of a software system is the structure of the system, which comprises software
components, the externally visible properties of those components and the relationships
between them (Balzert, 2005). The choice of the architecture pattern, as the base for the
software architecture, is a fundamental one and also one of the first decisions to make. These
early decisions are the most important and can only be revised with much effort and time.
Therefore the software developer basically refers to reliable and proven architecture patterns,
to avoid the risk of wrong decisions. In the literature one can find a lot of different
architecture patterns. Buschmann et al. (1998) categorizes these patterns into four groups
(table 2): Mud-to-Structure, Distributed Systems, Interactive Systems and Adaptive Systems.

Table 2 - Examples of architecture patterns (Buschmann et al., 1998)

Architecture group Examples for architecture pattern
Mud-to-Structure Layers, Pipes and Filters, Multi-Tier, Blackboard
Distributed Systems Mediator, Client-Server

Interactive Systems Model-View-Controller (MVC),
Presentation-Abstraction-Control (PAC)

Adaptive Systems Microkernel, Reflection

The architecture pattern of the group Mud-to-Structure should organize the components and
objects of software systems (Buschmann et al., 1998). The functionality of the software
systems is divided into cooperative layers. The most common examples are Layers, Pipes and
Filters, Multi-Tier and Blackboard architectures. The Distributed Systems are serving to
support the distributed resources and services in networks (Buschmann et al., 1998). Two
examples are Mediator and Client-Server architecture. In the area of Interactive Systems it
turned out that software for a graphical user interface should have another structure as
applications which display their results on terminals (Budszuhn, 2002). These software
systems should separate the control of the program from their view. The most important
patterns for this group are the Model-View-Controller (MVC) and the Presentation-
Abstraction-Control (PAC) architectures. The last group is represented by the Adaptive
Systems. In particular, the extensibility and adaptability from software systems should be
supported (Buschmann et al., 1998). The most common patterns for this group are
Microkernel and Reflection.

Choice of an architecture pattern
The decision for an architecture pattern must be made on the basis of the defined
requirements (section 2.2). Hence, the DIS as the HMI and information manager for the
platoon system must be allocated one of the previously presented architecture groups. The
claimed interaction with the user (R5) classifies the DIS as an Interactive System. The DIS
has to process all the incoming data (R3) and has to exchange this data with the system
environment, thereby relying on the external communication interfaces (R4). Compared to the
required aspects of modularity, extensibility, flexibility and configurability (R1), the DIS can
be considered also as an Adaptive System, which must run robustly and reliably in the car
(R2). Consequently, the defined requirements can be summarized as the claim for a modular,
extensible, flexible and configurable HMI, whereby especially the aspect of extensibility
accounts for the modularity and flexibility of the software architecture. The denotation of the
DIS as a HMI makes the importance of a structured human-machine interaction obvious, so
finally the Model-View-Controller (MVC) architecture was chosen for the development of the

 256

DIS as an Interactive System. The PAC architecture can be disregarded, because this pattern
is especially used for the development of agent systems (Buschmann et al., 1998).

Model-View-Controller (MVC) architecture
The MVC architecture pattern was first introduced by Reenskaug (1979) as a common design
solution to administrate great and complex data. In the following years it turned out that this
architecture pattern covers more application areas. So today MVC architecture is used in
various software projects (e.g. the class library Qt for platform independent programming of
graphical user interfaces). In general, the MVC architecture pattern allows illustrating the data
model (model) in different ways on the graphical user interface (views). Through program
logics (controllers) the input of the data is administrated. The data models as well as their
manipulation schemes are available for different graphical elements and controls. The
extensibility of software systems created with the MVC pattern with new designs and controls
is easily possible due to the explicit interface description (Budszuhn, 2002).

Basically, the component concept of the DIS is built on the basis of the MVC pattern
introduced before. In some cases the functionality of the software components are slightly
different from the ones in the MVC literature. The architecture – following the MVC
architecture pattern – is based on three core components, a Controller-, a View- and a Model-
Component. The Model-component serves as a collection of abstract data structures, which
only administers the data. Unlike the MVC pattern, where the Model-component is
responsible for manipulating the dates, the Model-component in the adapted MVC pattern has
solely administrative tasks. These tasks are primarily the access control and thread backup.
The other components (Controller and View) are unknown to the Model-component. Along
the lines of the general MVC pattern, the View-component displays the information provided
by the Model-component. Data manipulation or other alterations by user interaction are
communicated to the View-component by the Controller-component. The View-component
knows the Model- as well as the Controller-component in order to readout data about user
interaction. Simultaneously, it administers the various Gui-components. These comprise
graphical elements, which visualize selected data from the Model-component for the user.
The logic and functionality of the software is located in the Controller-component. This
component evaluates user interactions and manipulates data. In addition the Controller
informs the View-component about data manipulation or special requests of the user, which
lead to a new or modified notation of a Gui-component (e.g. change of notation, deactivation
of functionality). The Controller-component also administers Logic- and Comm-components.
The Controller on the one hand extends the program logic and on the other hand enables the
possibility of external communication (e.g. CAN, 3G).

2.4 Implementation of the Software-Architecture

Figure 3 shows a simplified UML class diagram of the DIS software architecture. The
components Model, View, Controller, Logic, Gui, Comm and ModelData are realized through
several classes. To avoid complexity, a well arranged overview is given in the figure, by
excluding the attributes, methods and multiplicities of the classes. Basically the software
architecture is divided into core components, abstract extension-components, concrete
extension-components and auxiliary components. This concept enables, next to the chosen
software architecture, a high flexibility concerning the extensibility with program logic, data
models and design elements. In addition, dynamic libraries are used to uncouple the core
source code of the concrete extension-components from the main program of the DIS. Also a
static library for the DIS is used, where all necessary definitions (e.g. classes, auxiliary

 257

classes) for the implementation of the software system are included. In the following, the
realization of the different software components will be explained.

CTheme CAttributes

CLogic

CComm

CGui

CModel

IView

CControllerIController

IModel

CView

CModelData

CTimer CMessageQueue CMemDC

CFunctionsetCConvoy

CUmts

CCan

CLabel

CConvoyOrga

CPicture

CConvoyControl

CMessage
String

CMessageString
Manager

CConvoyState

CDistance

CButton

CGps

Core
components

Concrete
extension-components

Abstract
extension-components

Auxiliary
components

Figure 3 - UML class diagram of the DIS software architecture (Friedrichs, 2008)

Core Components
The core components inherit from interface definitions (IModel, IView and IController), so
that some functionalities are concealed to the extension- and auxiliary components and access
is only allowed to designated functionalities. The overall functionality (according to the
visibility of the methods of the classes) is only known to the core components among
themselves and can only be used by them. The internal communication between the
Controller- and the View-components are done with an interprocess communication.
Asynchrony messages are saved into message queues until the recipient retrieves them. Both
core components have their own message queue. The DIS has to handle different threads
during the runtime. In such a multithread-application thread safety is very important. A piece
of software code is thread-safe if it functions correctly during simultaneous execution by
multiple threads (Budszuhn, 2002). In the software architecture the message queues as well as
the model-components are thread-safe implemented. For this purpose the synchronization
mechanism CSingleLock and CMultiLock from the Microsoft Foundation Classes (MFC) of
Microsoft was used. A lock is used to ensure that only one resource respectively one critical
section in a software component can be used by a thread. The other threads have to wait – due
to the closed locks – until the critical sections are opened for the next thread.

Abstract Extension-Components
An abstract extension-component is an abstract class, i.e. a class not completely implemented
concerning the method definitions. In an abstract class some methods are defined, other
methods – so called “pure virtual functions” – are not declared. More precisely this means
that from an abstract class no object can be derived. In the DIS software architecture the
Model-component is extended with ModelData-components, to add, remove or read out data.
The View is extended with the abstract class CGui. The Controller is extended with two
abstract extension-components: The class CComm for the external communication (e.g.
UMTS, CAN) and the class CLogic for the core functionality of the software system. The

 258

class CComm also has a message queue, which was described in the previous section. All
abstract classes have to be extended with concrete classes.

Concrete Extension-Components
Concrete extension-components are concrete classes which extend the software system
through logic functionalities (Logic-components: e.g. the functionality to organize and
operate truck platoons), data (ModelData-components: e.g. to manage the convoy state) and
views (Gui-components: the different elements for the graphical user interface, for instance
pictures, buttons, labels etc.). To do this the concrete extension-components inherit from the
abstract extensions components and complete the non-defined methods of the abstract classes.
The abstract extension-components provide a quantity of code for the internal communication
and processing within the software system, so that during the development of a concrete
extension component, the relevant part of the component can be focused. Moreover, this
procedure secures that every concrete extension component makes the required interfaces
available. Most of the concrete extension-components are implemented in Dynamic Linked
Libraries.

Auxiliary Components
The DIS software architecture provides a set of auxiliary components in a static library. Static
libraries, unlike dynamic ones, are not linked with the program during runtime of the
application, but already during compilation. As shown in figure 3, the static library includes
the interfaces of the core components (IModel, IView, IController), the abstract extension
components (CLogic, CComm, CGui, CModelData) and some auxiliary classes, for instance
to support Double-Buffering (CMemDC, CDC), thread safety (CMessageQueue),
manipulating text strings (CString) and timer functions (CTimer).

Configurability of the Software System with XML-Files
The design of the software architecture intends the configuration of the software system with
a XML configuration file. In this XML-file the configuration of the extension-components,
the behavior of the software systems by user interaction, the functionality of the core
components and the design of the graphical user interface is specified.

3. Conclusion

In this paper a brief introduction into electronically coupled truck platoons with Advanced
Driver Assistance Systems was given. Furthermore the Driver Information System to organize
and operate truck platoons was introduced. Following, the requirements for the software
architecture of the Driver Information System as the HMI and information manager of the
platoon system were derived and transferred into a software design. Finally, the
implementation of the architecture was described in detail.

The presented software architecture fulfills all the fundamental demands for the development
of interactive software systems in the automotive sector. Hereby the architecture ensures the
user interaction between the driver and the technical systems as well as the data processing
between the different system components in the vehicle. This architecture guarantees a
modern, flexible, extensible and easily configurable system, especially for HMI of driver
information and assistance systems. Due to its interactive and adaptive characteristics, the
presented architecture could be moreover seen as a generic software architecture framework.
The development of the Driver Information System for the organization and operation of
truck platoons and its software architecture took place in the project KONVOI. In the first

 259

instance, the Driver Information System was implemented into a Truck Driving Simulator
(Figure 4) which was used as a test environment for the module, integration and system tests.
The acceptance test with finally 27 truck drivers from the freight forwarding companies of the
project consortium showed a quite positive assessment and proved the functionality as well as
the reliability of the software system (Friedrichs, in prep.).

In the next step, the trial implementation of the Driver Information System in four truck
experimental vehicles is planned. The first test drives with two electronically coupled trucks
on a closed motorway in the Netherlands were done in November 2007.

Couple
Forward

Distance bar

Manuel Drive!

You can couple forward to
AC – ME 647.

30 m Main Menu

Figure 4 - Truck platoons in a truck driving simulator and the graphical user interface of the
DIS to organize and operate truck platoons (Friedrichs, 2008)

4. References

• Balzert, H. (2005), “Grundlagen der Informatik”, Spektrum Verlag.
• Budszuhn, F. (2002), “Visual C++-Programmierung mit den MFC”, Addison-Wesley.
• Buschmann, F., Meunier, R., Rohnert, H. (1998), “Pattern-Oriented Software

Architecture”, A System of Patterns, John Wiley.
• Commission of the European Communities, (2006), “Keep Europe moving - Sustainable

mobility for our continent”, Mid-term review of the European Commission’s 2001
Transport White Paper, Brussels.

• Friedrichs, A. (2008), “A Driver Information System for Truck Platoons”, doctoral thesis
at ZLW/IMA, RWTH Aachen University, VDI Verlag, Duesseldorf, in press.

• Henning, K., Preuschoff, E. (2003), “Einsatzszenarien für Fahrerassistenzsysteme im
Strassengueterverkehr und deren Bewertung”, VDI Verlag, Reihe 12, Nr. 531, Düsseldorf.

• Savelsberg, E. (2005), “Lastenheft für Elektronisch Gekoppelte Lkw-Konvois”, VDI
Verlag, Reihe 22, Nr. 21, Düsseldorf.

• Wietzke, J., Tran, M. (2005), “Automotive Embedded Systems, Springer Verlag, Berlin.
• Henning, K., Wallentowitz, H., Abel, D. (2007), “Das Lkw-Konvoisystem aus den

Perspektiven Informations-, Fahrzeug- und Automatisierungstechnik”, in Proceedings of
the conference Mechatronik 2007, VDI Verlag, Düsseldorf, 133-147.

• Meisen, P., Henning, K., Seidl, T. (2008), “A Data-Mining Technique for the Planning
and Organization of Truck Platoons”, in Proceedings of the International Conference on
Heavy Vehicles, Paris.

• Reenskaug, T. (1979), “Thing-Model-View-Editor, An Example From a Planning
System”, In Xerox PARC technical note, May 1979.

