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Abstract
A steering-based control is proposed for improving the lateral performance of an
A-double combination with an active dolly. The controller is based on static output
feedback combined with dynamic feed-forward and is designed to ensure an H∞
performance objective in the face of parametric uncertainty. The synthesis is per-
formed via linear matrix inequality (LMI) optimizations. Two feed-forward design
methods are proposed and one of them is highlighted as the more rigorous approach
for dealing with parametric uncertainty. The verification results confirm a significant
reduction in rearward amplification of yaw rates and high speed transient off-tracking
even when the dynamic feed-forward from the tractor steering angle accompanies
the static feedback only from the articulation angles.

Keywords: Static output feedback , Dynamic feedforward, H∞ synthesis , LMI based
control, Rearward amplification, Active dolly
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1. Introduction

Rapid growth in the transportation of goods has led to an increased demand for high
capacity transport (HCT) vehicles, leading to raised concerns about environmental
effects, road freight traffic and increased infrastructure usage. Increasing cost of fuel,
congestions and gas emissions make long heavy vehicle combinations (LHVCs) as
attractive alternatives to conventional heavy vehicle combinations (CHVCs) in goods
transportation (H. Backman and R. Nordström (2002), J. Woodrooffe and L. Ash
(2001)).

One major issue concerning LHVCs is their potential impacts on traffic safety. Road
safety performance of LHVCs depends on the technical features such as power
train and braking systems capability, lateral dynamical stability and maneuverability.
Specific performance measures are introduced to assess the vehicle behaviour from
various aspects. The most common measure is the so-called rearward amplification
(RWA) of the yaw rate or lateral acceleration to assess the high speed lateral per-
formance of HCT vehicles. Steering and braking based control are two main control
strategies to improve the high-speed lateral performance of HCT vehicles. Several
works have already proposed to reduce the yaw rate or lateral acceleration RWA for
various HCT vehicles by using active trailer steering (see e.g. S. Kharrazi (2012) and
the references therein).

The aim of this paper is to improve the high speed lateral performance of an A-double
combination by controlling an active dolly. The dolly is a small unit in the A-double
combination and therefore active dolly steering is more economical and convenient
(M. M. Islam, L. Laine, and B. Jacobson (2015)). The potential improvements by con-
trolling the dolly have been studied in (M. S. Kati, L. Laine, and B. Jacobson (2014)) by
using a simple feedback control strategy. M. M. Islam, L. Laine, and B. Jacobson (2015)
have proposed a feed-forward controller based on a nonlinear inversion technique
and investigated controlled system sensitivity against the uncertainty in the steering
actuator parameters.

In this paper, we propose a combined static output feedback and dynamic feed-
forward controller which is designed to be robust against the variations in the steering
actuator parameters. Such a scheme is shown to improve the lateral performance of
an A-double combination as justified by frequency domain analysis and time-domain
simulations.

2. Vehicle Model

An A-double combination consists of a tractor as the lead unit and two semitrailers
linked together by a dolly converter unit as shown in Figure 1. Since the dolly is
the smallest among all A-double units, its axles are chosen to be steerable for yaw
rate control of the A-double, while the axles of the other units stay unchanged. The
A-double is considered with a total weight of 80 tons and a total length of about 31.5
meters. Figure 1 shows an A-double with steerable axles identified by green tyres.
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Figure 1 – A-double combination schematic and bicycle model.

The controller is designed based on a linear vehicle model without accounting for the
roll dynamics and load transfer. The linear vehicle model is considered to be accurate
under the assumption that steering and articulation angles are small. The schematic
diagram of the linear vehicle model is depicted in Figure 1, where the axle groups in
the semitrailers and the dolly are lumped together into a single axle in the middle of
each axle group. We assume that all parameters of the vehicle are known and fixed
except the dolly steering actuator parameters. A linearized single-track model of the
A-double is derived by using lagrangian method and expressed as

Mq̈(t) + C q̇(t) +Kq(t) = Fδd δd(t) +Fδt δt(t), (1)

where M is the mass matrix, C is the damping matrix and K , Fδd and Fδt are the
stiffness matrices. δd is the dolly steering angle that will be obtained as the output of
the actuator, while δt is the tractor steering angle viewed as the disturbance input.
The generalized coordinate vector is identified by qT = [y1 ϕ1 θ1 θ2 θ3] in reference to
Figure 1. Now considering the state vector as xT

q , [qT q̇T], a state-space model of
the system in (1) can be written in the form of[

q̇
q̈

]
︸︷︷︸

ẋq

=

[
0 I

−M−1K −M−1C

]
︸ ︷︷ ︸

A

[
q
q̇

]
︸︷︷︸

xq

+

[
0

M−1Fδd

]
︸ ︷︷ ︸

B

δd +

[
0

M−1Fδt

]
︸ ︷︷ ︸

H

δt. (2)

Two states y1 and ϕ1 are removed from xq to obtain the state-space model to be used
in the design (M. Levén, A. Sjöblom, M. Lidberg and B. Schofield (2011)). We stress
that this is possible thanks to the structure of the matrix K. As a result, the state
vector is formed as

xp = [θ1 θ2 θ3 Vy1 ϕ̇1 θ̇1 θ̇2 θ̇3]
T. (3)

By removing the relevant row blocks from all matrices and also the relevant column
block from A, we obtain a state-space model of the plant that will be considered in
the design as follows:

ẋp = Apxp + Bpδd + Hpδt. (4)

The dolly steering actuator model consists of two parts: a first order filter and a time
delay as shown in Figure 2.b. The first order filter is characterized by a time constant
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of τa, while the second part is modeling a transport delay of τd. The transfer function
of the time delay is approximated by a first order Padé-approximation as follows:

e−sτd ≈ 1− 0.5τd
1 + 0.5τd

. (5)

We then introduce a state space realization of the actuator model as

ẋa =

[
−2/τd 0
1/τa −1/τa

]
︸ ︷︷ ︸

Aa(σ)

xa +

[
4/τd
−1/τa

]
︸ ︷︷ ︸

Ba(σ)

u, δd =
[
0 1

]︸ ︷︷ ︸
Ca

xa +
[
0
]︸︷︷︸

Da

u,
(6)

where u is the control input to be designed. Note that the actuator dynamics depend
rationally on τa and τd, which will be considered as uncertain. In order to simplify the
type of dependence, we introduce two new parameters as σ1 = 1/τa and σ2 = 1/τd.
In this fashion, we obtain an equivalent representation of the system with affine
dependence on σ = (σ1,σ2) as

ẋa = Aa(σ)xa + Ba(σ)u, δd = Caxa + Dau. (7)

It is assumed that the uncertain parameter vector is known to be in the following
set:

∆ , {σ = (σ1,σ2) : σi ∈ [σmin
i ,σmax

i ],i = 1,2}. (8)

In addition, to characterize typical driver behaviour, we assume that the frequency
content of δt is concentrated in a specific frequency range. Therefore, we introduce
an artificial bandpass filter with a realization as

ẋb = Abxb + Bbw, δt = Cbxb + Dbw, (9)

where xb and w are the artificial state vector and disturbance input respectively.
In this paper, we consider a simple second-order band-pass filter. With the Laplace
transform of w(t) represented as ŵ(s), we express the tractor steering angle as

δ̂t(s) =
2ζωcs

s2 + 2ζωcs + ω2
c︸ ︷︷ ︸

W(s)

ŵ(s), (10)

where ωc is identified as the frequency at which the filter gain is one. The 3-dB
bandwidth of this filter is identified as [ωl,ωh], where the lower and upper limits are
given by

ωl =
(

1 + 2ζ2 −
√
(1 + 2ζ2)2 − 1

)
ωc, ωh =

(
1 + 2ζ2 +

√
(1 + 2ζ2)2 − 1

)
ωc.

(11)
The bandwidth of the filter needs to be chosen based on typical and realistic driver
inputs. We now append the steering actuator dynamics and the bandpass filter to
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the dynamics of the plant to obtain a complete state-space description as

ẋ =

Ap BpCa HpCb
0 Aa(σ) 0
0 0 Ab


︸ ︷︷ ︸

A(σ)

xp
xa
xb


︸ ︷︷ ︸

x

+

HpDb
0
Bb


︸ ︷︷ ︸

H

w +

BpDa
Ba(σ)

0


︸ ︷︷ ︸

B(σ)

u,

z =
[
Cp DpCa GpCb

]︸ ︷︷ ︸
C

x + GpDb︸ ︷︷ ︸
G

w +
[
DpDa

]︸ ︷︷ ︸
D

u, (12)

y =
[
Sp 0 RpCb

]︸ ︷︷ ︸
S

x +
[
RpDb

]︸ ︷︷ ︸
R

w,

where z = Cpxp + Dpδd + Gpδt is the signal used for performance evaluation and y =
Spxp + Rpδt is the measured output. We emphasize that the parameter dependence
is obtained only in the A and B matrix in this model.

As we will detail in the next section, the design objective will be to synthesize a fixed
controller such that the controlled system behaves in a desirable way for all values
of σ = (σ1,σ2) within the domain given in (8).

3. Control Design

The objective of the lateral controller is to suppress undesired yaw rate rearward
amplification (RWA) in the towed units by active steering of the dolly in a single
lane change maneuver. We propose a static output feedback controller plus a dynamic
feed-forward for this purpose. The closed loop system schematic diagram is shown
in Figure 2.a. In this section, we first provide a suitable formulation of the problem
and then present possible synthesis procedures based on LMI optimization.

The objective of the controller is to determine the required steering angle for the dolly
to suppress the yaw rate RWA of the last semitrailer. Requiring this might cause an
increase in the yaw rate of the dolly. In order to avoid high RWA both in the dolly
and the last semitrailer, we choose the performance output as

z =

[
λr3

(1− λ)r4

]
. (13)

where λ ∈ [0,1) is a scalar that can be used to adjust the relative emphasis on the
dolly and the second semitrailer.

The control law for the synthesis problem is given by

u(t) = ufb(t) + uf f (t), (14)

where ufb is the static output feedback control input and uf f is the dynamic feed-
forward control input. We consider generating the feedback control input ufb as

ufb(t) = Kfby(t), (15)
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Figure 2 – Schematic diagrams

where Kfb is the feedback gain vector to be designed. On the other hand, uf f is
obtained by passing δt through a dynamic filter described by

ẋ f = A f x f + B f δt, uf f = C f x f + D f δt, (16)

where x f represents the filter state and (A f ,B f ,C f ,D f ) represents a realization of the
filter to be found. We can hence express the feed-forward control input as

ûf f (s) = (C f (sI − A f )
−1B f + D f )︸ ︷︷ ︸

Kf f (s)

δ̂t(s). (17)

Our design procedure is composed of two steps. In the first step, the static output
feedback gain K f b is obtained. This is then used to find the closed-loop system
description in the absence of feed-forward control. This description is used in the
second step in which K f f (s) is designed.

3.1 First Step: Robust Static Output Feedback Design

We consider a static output synthesis with an H∞ performance objective. The H∞
synthesis aims at ensuring bounds on the energy gain from the disturbance to the
performance output. An H∞ synthesis problem can be formulated for our system
as follows: Given the state-space description in (12), find a gain vector K f b such
that, with the control input generated as in (14), the closed-loop system is stable and
satisfies the following condition for all σ ∈ ∆:

‖z‖2 < γ‖w‖2,∀w with 0 < ‖w‖2 < ∞ and x(0) = 0. (18)

At this point, we recall the definition of the L2-norm as ‖w‖2 ,
√∫ ∞

0 w(t)Tw(t)dt.
In a typical synthesis, the goal would be to minimize γ.

Let us now describe a procedure for H∞ synthesis as adapted from (H. Köroğlu
and P. Falcone (2014)). We also introduce the set of extreme points of the parameter
domain ∆ based on the minimum and maximum values of σi’s as

Π , {σi : i = 1, . . . ,η}. (19)

In our case with two uncertain parameters, we will have η = 4 extreme points as

(σmin
1 ,σmin

2 ), (σmin
1 ,σmax

2 ), (σmax
1 ,σmin

2 ), (σmax
1 ,σmax

2 ). (20)

Robust Control of an A-double with Active Dolly based on SOFB and DFF 6



We also introduce the associated values of the A matrix as follows:

Ai , A(σi) and Bi , B(σi). (21)

The synthesis can then be realized via the following steps (see H. Köroğlu and P.
Falcone (2014)):

1) Consider a grid for a positive scalar φ with φ1 = φmin > 0 and φµ = φmax > φmin.
2) For each φj,j = 1, . . . ,µ, find γj by solving

γj = arg min{γ : N i(φj) ≺ 0,i = 1, . . . ,η; Y � 0} (22)

where N i is defined in terms of φ and the matrix variables Y = YT ∈ Rk×k,
W ∈ Rm×m, N ∈ R1×m as

N i(φ) , He


−φW φ(SY−WS) φR 0
BN AiY+BiNS H 0
0 0 −γ

2 I 0
DN CY+DNS G −γ

2 I

 . (23)

Here we used HeM ,M+MT to simplify the expression of the LMI condition.
The state and output dimensions are represented as k and m respectively.

3) Find the minimum γ as γmin = min{γj : j = 1, . . . ,µ} and construct Kfb by
using (W,N) obtained from the optimization problem associated with γmin as
follows:

Kfb = NW−1. (24)

By applying the feedback control obtained from this step, a new state space realization
can be obtained for the controlled plant combined with the actuator as follows:

ẋc =

[
Ap + BpDaK f bSp BpCa

BaK f bSp Aa

]
︸ ︷︷ ︸

Ac(σ)

[
xp
xa

]
︸ ︷︷ ︸

xc

+

[
HpCb + BpDaK f bRpCb

BaK f bRpCb

]
︸ ︷︷ ︸

Hb(σ)

xb

+

[
HpDb + BpDaK f bRpDb

BaK f bRpDb

]
︸ ︷︷ ︸

Hc(σ)

w +

[
BpDa

Ba

]
︸ ︷︷ ︸

Bc(σ)

uf f , (25)

z =
[

Cp + DpDaK f bSp DpCa
]︸ ︷︷ ︸

Cc

xc +
[

GpCb + DpDaK f bRpCb
]︸ ︷︷ ︸

Gb

xb

+
[

GpDb + DpDaK f bRpDb
]︸ ︷︷ ︸

Gc

w + D︸︷︷︸
Dc

uf f , (26)

In this description, uf f is the feed-forward control input which is left to be designed
in the next step.

3.2 Second Step: Dynamic Feed-Forward Design

We propose two alternative methods for dynamic feed-forward design. The first
method is applicable to a nominal model, while the second one can be used for

Robust Control of an A-double with Active Dolly based on SOFB and DFF 7



an uncertain system as well.

3.2.1 Method 1
In this method, we reformulate the problem as an H∞ model matching problem and
design the dynamic feedforward via standard dynamic output feedbackH∞ synthesis
(C. Scherer, P. Gahinet, and M. Chilali (1997)). For this purpose, we fix σ to its nominal
(typical or average) value and consider the design for a single model. The problem
is then formulated as a standard H∞ model matching problem. To this end, we first
find the expression of z in the Laplace domain as

ẑ(s) = (Ccl(sI−Acl)
−1Hcl+Gc)︸ ︷︷ ︸

G(s)

ŵ(s)+(Ccl(sI−Acl)
−1Bcl+Dc)︸ ︷︷ ︸

T (s)

û f f (s).

where we have Acl =

[
Ac Hb
0 Ab

]
, Hcl =

[
Hc
Bb

]
, Bcl =

[
Bc
0

]
and Ccl =

[
Cc Gb

]
. By now

recalling the expression of û f f as in (17), we end up with the following expression:

ẑ(s) =
(
G(s) + T (s)Kf f (s)W(s)

)
ŵ(s). (27)

The standard H∞ model-matching problem aims at finding a stable transfer function
Kf f by performing the following H∞-norm minimization:

γopt := min
Kf f (s) stable

∥∥G(s) + T (s)Kf f (s)W(s)
∥∥

∞ . (28)

The transfer matrices G and T are required to be stable and proper, which will be the
case in our problem. This problem is easily reformulated as an H∞ synthesis based
on dynamic output feedback, for which a standard Matlab function can be used.

3.2.2 Method 2
In the second method, we use the approach proposed in (H. Köroğlu and P. Falcone
(2014)) by a modification which is including a weighting filter for the external distur-
bance. The feed-forwarded signal is basically a filtered version of external disturbance
in the system. In order to reformulate the problem as in (H. Köroğlu and P. Falcone
(2014)), we first combine the dynamics of the band-pass filter with the dynamics of
the feed-forward filter as follows:

˙̂x f =

[
Ab 0

B f Cb A f

]
︸ ︷︷ ︸

Â f

[
xb
x f

]
︸ ︷︷ ︸

x̂ f

+

[
Bb

B f Db

]
︸ ︷︷ ︸

B̂ f

w, (29)

uf f =
[

D f Cb C f
]︸ ︷︷ ︸

Ĉ f

x̂ f +
[

D f Db
]︸ ︷︷ ︸

D̂ f

w. (30)

We next re-express the dynamics of the controlled plant from (25)-(26) as

ẋc = Acxc +
[

Hb 0
]︸ ︷︷ ︸

Ĥb

x̂ f + Hcw + Bcuf f , (31)

z = Ccxc +
[

Gb 0
]︸ ︷︷ ︸

Ĝb

x̂ f + Gcw + Dcuf f . (32)

Robust Control of an A-double with Active Dolly based on SOFB and DFF 8



and thereby introduce the extended matrices Ĥb and Ĝb. By then applying the same
approach as in (H. Köroğlu and P. Falcone (2014)), we obtain an LMI condition for
the performance objective in (18) as follows:

He


AcY Ĥb + AcV −VÂ f Ĥc + BcD̂ f −VB̂ f 0

0 XÂ f XB̂ f 0
0 0 −γ

2 I 0
CcY Ĝb + GcV + DcĈ f Gc + DcD̂ f −γ

2 I

 ≺ 0. (33)

In this condition Y � 0 and X � 0 are symmetric positive-definite matrix variables,
while V is an arbitrary matrix variable. The dimensions of these matrices can be
identified from compatibility. On the other hand, Ĉ f and D̂ f are structured matrix
variables that depend on C f and D f as identified from (30). We consider that (A f ,B f )

and thereby (Â f ,B̂ f ) are fixed while C f and D f are to be designed. We use the same
form of the realization given in (H. Köroğlu and P. Falcone (2014)) where the transfer
function Kf f (s) is expressed as

Kf f (s)=C f (sI−A f )B f +D f =D f +
l

∑
i=1

C f
i(s + ψ)−i. (34)

The variables ψ and l are the pole and the order of the filter to be fixed by the designer
beforehand. Note that the LMI in (33) has affine dependence on the uncertain param-
eter σ via the system matrices in (31)-(32), which is suppressed for simplicity. Hence
the parameter-dependent LMI is rendered finite-dimensional simply be imposing it
at the extreme points.

4. Simulation Results

In this section, the synthesis procedures developed in the previous sections are ap-
plied to a linear vehicle model with vehicle parameters from (M. M. Islam, L. Laine,
and B. Jacobson (2015)) and associated simulation results are provided. The A-double
is equipped with an active dolly where both axles are steerable with the same amount
of steering angle. A single lane change manoeuvre is performed at a longitudinal
velocity of 80 Km/h. A sinusoidal steering input is chosen for the input w with an
amplitude of 3 deg and a frequency of 0.4 Hz. It is assumed that only the articulation
angles are available, i.e. y =

[
θ1 θ2 θ3

]T.

Recall that the objective of the controller is to calculate the required u(t) in (14)
to minimize the yaw rate of the dolly and the second semitrailer. Thus, the control
design is provided for the performance indicator in (13) with the weighting coefficient
λ = 0.5. With this choice, we place the same emphasis on the yaw rate of both the
dolly and the second semitrailer.

The bandpass filter in (10) is used to characterize the tractor steering input with a
fixed bandwidth of [ωl,ωh]= [2π× 0.2,2π× 0.6] for all cases. The values τa = 0.35 and
τd = 0.1 are chosen for the nominal system from the work in (M. M. Islam, L. Laine,
and B. Jacobson (2015)). For the uncertain steering actuator model, τa ∈ [0.3,0.4] and
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Figure 3 – Singular value plots for robust static output feedback design and
two dynamic feedforward design methods

τd ∈ [0.05,0.5] are chosen.

In order to synthesize the output feedback controller in the first step, we first find the
minimum value of γ via an interval search over φ for both nominal and uncertain
system. The minimum γ value and the associated gain vector are computed as
follows:

γ = 3.763 , Kfb =
[
−0.487 −0.499 −0.083

]
.

In the second step, the dynamic feed-forward filter Kfb(s) is computed with two
alternative methods as follows:

K1
f f (s) =

357.94(s+20.1)(s+8.7)(s+4.75)(s+1.67(s+0.02
(s+20)(s+0.001)(s2+3.52s+4.74)(s2+3.06s+6.94)

×

(s2+2.18s+4.3)(s2−3.81s+24.91)(s2+10.59s+79.95)
(s2+2.23s+7.33)(s2+8.993s+34.68)(s2+208.4s+21730)

K2
f f (s) =

1.8389(s2 − 3.13s + 27.63)
(s + 5)2 .

Figure 3 illustrates the singular value plots of the transfer function from δt to z in all
the cases. These are obtained as overlay plots for different values of the parameters τa
and τd within the considered ranges. We observe from this figure that the static output
feedback controller already leads to some reduction in the maximum singular value.
Nevertheless, by adding dynamic feedforward, even further reduction is obtained.
Although the filter obtained with the first method leads to significant reduction in
the nominal case, the maximum singular value increases for some parameters within
the considered range. On the other hand, we observe a robust behavior with the
second filter in that the maximum singular value is kept desirably small in all the
cases.
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Figure 4 – Yaw rates of A-double units through single lane change
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Figure 5 – Steering inputs for passive and active dolly steering cases

The controllers are also tested in time domain simulations, whose results are pre-
sented in Figures 4 and 5. For ease of evaluation, we also provide in Table 1 the
yaw rate RWA of the dolly and the last semitrailer in four different cases: passive
(i.e. uncontrolled) dolly steering case and three different active (i.e. controlled) dolly
steering cases. We observe that the performance is improved significantly with com-
bined static feedback and dynamic feed-forward if compared to the case in which
feed-forward is not applied.
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Table 1 – Yaw rate RWA of the dolly and the last semitrailer for passive and
active dolly steering cases for the nominal system

Synthesis methods Lat. acc. RWA3 Lat. acc. RWA4
Without Controller 1.79 1.81

FB controller 1.25 1.23
FB+FF controller, method 1 0.57 1.1
FB+FF controller, method 2 1.11 0.75

5. Conclusions

In this paper, a static output feedback controller combined with dynamic feed-forward
is proposed for the control of an A-double combination. The designs are based on
the H∞ synthesis approach. Both feedback and feed-forward designs are adapted
from previous works with some suitable modifications. Two alternative feed-forward
design approaches are proposed and compared. The second method is applicable to
uncertain systems and provides filters with fixed order and poles. As illustrated
by our design example, one can obtain robust performance by applying the second
method with significantly reduced orders.
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